105,751 research outputs found

    CKM Matrix: Status and New Developments

    Full text link
    An analysis of the CKM matrix parameters within the {\it R}fit approach is presented using updated input values with special emphasis on the recent sin2β\sin{2\beta} measurements from BABAR and Belle. The QCD Factorisation Approach describing Bππ,KπB \to \pi\pi,K\pi decays has been implemented in the software package CKMfitter. Fits using branching ratios and CP asymmetries are discussed.Comment: 5 pages, 6 postscript figures, contribution to the proceedings of the 9th International Symposium on Heavy Flavour Physics, September 2001, Pasadena, US

    A New Approach to a Global Fit of the CKM Matrix

    Full text link
    We report on a global CKM matrix analysis taking into account most recent experimental and theoretical results. The statistical framework (Rfit) developed in this paper advocates formal frequentist statistics. Other approaches, such as Bayesian statistics or the 95% CL scan method are also discussed. We emphasize the distinction of a model testing and a model dependent, metrological phase in which the various parameters of the theory are determined. Measurements and theoretical parameters entering the global fit are thoroughly discussed, in particular with respect to their theoretical uncertainties. Graphical results for confidence levels are drawn in various one and two-dimensional parameter spaces. Numerical results are provided for all relevant CKM parameterizations, the CKM elements and theoretical input parameters. Predictions for branching ratios of rare K and B meson decays are obtained. A simple, predictive SUSY extension of the Standard Model is discussed.Comment: 66 pages, added figures, corrected typos, no quantitative change

    Optical Stark Effect and Dressed Excitonic States in a Mn-doped Quantum Dot

    Full text link
    We report on the observation of spin dependent optically dressed states and optical Stark effect on an individual Mn spin in a semiconductor quantum dot. The vacuum-to-exciton or the exciton-to-biexciton transitions in a Mn-doped quantum dot are optically dressed by a strong laser field and the resulting spectral signature is measured in photoluminescence. We demonstrate that the energy of any spin state of a Mn atom can be independently tuned using the optical Stark effect induced by a control laser. High resolution spectroscopy reveals a power, polarization and detuning dependent Autler-Townes splitting of each optical transition of the Mn-doped quantum dot. This experiment demonstrates a complete optical resonant control of the exciton-Mn system

    The effect of an imaginary part of the Schwinger-Dyson equation at finite temperature and density

    Full text link
    We examined the effect of an imaginary part of the ladder approximation Schwinger-Dyson equation. We show the imaginary part enhances the effect of the first order transition, and affects a tricritical point. In particular, a chemical potential at a tricritical point is moved about 200(MeV). Thus, one should not ignore the imaginary part. On the other hand, since an imaginary part is small away from a tricritical point, one should be able to ignore an imaginary part. In addition, we also examined the contribution of the wave function renormalization constant.Comment: 12 pages, 14 figure

    An experimental proposal to study collapse of the wave function in travelling-wave parametric amplifiers

    Full text link
    The read-out of a microwave qubit state occurs using an amplification chain that enlarges the quantum state to a signal detectable with a classical measurement apparatus. However, at what point in this process did we really `measure' the quantum state? In order to investigate whether the `measurement' takes place in the amplification chain, we propose to construct a microwave interferometer that has a parametric amplifier added to each of its arms. Feeding the interferometer with single photons, the visibility depends on the gain of the amplifiers and whether a measurement collapse has taken place during the amplification process. We calculate the interference visibility as given by standard quantum mechanics as a function of gain, insertion loss and temperature and find a magnitude of 1/31/3 in the limit of large gain without taking into account losses. This number reduces to 0.260.26 in case the insertion loss of the amplifiers is 2.22.2 dB at a temperature of 5050 mK. We show that if the wave function collapses within the interferometer, we will measure a reduced visibility compared to the prediction from standard quantum mechanics once this collapse process sets in.Comment: 21 pages and 23 figures (including appendices and subfigures). v4: Abstract and introduction rewritten and note on stochasticity of quantum state collapse added to section 6. v5: no content changes w.r.t. v

    A model for atomic and molecular interstellar gas: The Meudon PDR code

    Get PDF
    We present the revised ``Meudon'' model of Photon Dominated Region (PDR code), presently available on the web under the Gnu Public Licence at: http://aristote.obspm.fr/MIS. General organisation of the code is described down to a level that should allow most observers to use it as an interpretation tool with minimal help from our part. Two grids of models, one for low excitation diffuse clouds and one for dense highly illuminated clouds, are discussed, and some new results on PDR modelisation highlighted.Comment: accepted in ApJ sup

    Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light

    Full text link
    Transferring quantum information between distant nodes of a network is a key capability. This transfer can be realized via remote state preparation where two parties share entanglement and the sender has full knowledge of the state to be communicated. Here we demonstrate such a process between heterogeneous nodes functioning with different information encodings, i.e., particle-like discrete-variable optical qubits and wave-like continuous-variable ones. Using hybrid entanglement of light as a shared resource, we prepare arbitrary coherent-state superpositions controlled by measurements on the distant discrete-encoded node. The remotely prepared states are fully characterized by quantum state tomography and negative Wigner functions are obtained. This work demonstrates a novel capability to bridge discrete- and continuous-variable platforms

    Reply to: ''Improved Determination of the CKM Angle alpha from B -> pipi decays''

    Full text link
    In reply to hep-ph/0701204 we demonstrate why the arguments made therein do not address the criticism exposed in hep-ph/0607246 on the fundamental shortcomings of the Bayesian approach when it comes to the extraction of parameters of Nature from experimental data. As for the isospin analysis and the CKM angle alpha it is shown that the use of uniform priors for the observed quantities in the Explicit Solution parametrization is equivalent to a frequentist construction resulting from a change of variables, and thus relies neither on prior PDFs nor on Bayes' theorem. This procedure provides in this particular case results that are similar to the Confidence Level approach, but the treatment of mirror solutions remains incorrect and it is far from being general. In a second part it is shown that important differences subsist between the Bayesian and frequentist approaches, when following the proposal of hep-ph/0701204 and inserting additional information on the hadronic amplitudes beyond isospin invariance. In particular the frequentist result preserves the exact degeneracy that is expected from the remaining symmetries of the problem while the Bayesian procedure does not. Moreover, in the Bayesian approach reducing inference to the 68% or 95% credible interval is a misconception of the meaning of the posterior PDF, which in turn implies that the significant dependence of the latter to the chosen parametrization cannot be viewed as a minor effect, contrary to the claim in hep-ph/0701204.Comment: 5 pages, 1 figure. Fig. 1 corrected (wrong file
    corecore